"Four-potential" ferrocene labeling of PNA oligomers via click chemistry.
نویسندگان
چکیده
The scope of the Cu(I)-catalyzed [2 + 3] azide/alkyne cycloaddition (CuAAC, click chemistry) as a key reaction for the conjugation of ferrocene derivatives to N-terminal functionalized PNA oligomers is explored herein (PNA: peptide nucleic acid). The facile solid-phase synthesis of N-terminal azide or alkyne-functionalized PNA oligomer precursors and their cycloaddition with azidoferrocene, ethynylferrocene, and N-(3-ethylpent-1-yn-3-yl)ferrocene-carboxamide (DEPA-ferrocene) on the solid phase are presented. While the click reaction with azidomethylferrocene worked equally well, the ferrocenylmethyl group is lost from the conjugate upon acid cleavage. However, the desired product was obtained via a post-SPPS conversion of the alkyne-PNA oligomer with azidomethylferrocene in solution. The synthesis of all ferrocene-PNA conjugates (trimer t(3)-PNA, 3, 4, 5, 6; 12mer PNA, 10 - t c t a c a a g a c t c, 11 - t c t a c c g t a c t c) succeeded with excellent yields and purities, as determined by mass spectrometry and HPLC. Electrochemical studies of the trimer Fc-PNA conjugates 3, 4, 5, and 6 with four different ferrocene moieties revealed quasi-reversible redox processes of the ferrocenyl redox couple Fc(0/+) and electrochemical half-wave potentials in a range of E(1/2) = -20 mV to +270 mV vs FcH(0/+) (Fc: ferrocenyl, C(10)H(9)Fe). The observed potential differences ΔE(1/2)(min) are always greater than 60 mV for any given pair of Fc-PNA conjugates, thus allowing a reliable differentiation with sensitive electrochemical methods like e.g. square wave voltammetry (SWV). This is the electrochemical equivalent of "four-color" detection and is hence denoted "four-potential" labeling. Preparation and electrochemical investigation of the set of four structurally different and electrochemically distinguishable ferrocenyl groups conjugated to PNA oligomers, as exemplified by the conjugates 3, 4, 5, and 6, demonstrates the scope of the azide/alkyne cycloaddition for the labeling of PNA with electrochemically active ferrocenyl groups. Furthermore, it provides a PNA-based system for the electrochemical detection of single-nucleotide polymorphism (SNP) in DNA/RNA.
منابع مشابه
Synthesis of organometallic PNA oligomers by click chemistry.
The facile side-specific insertion, on the solid phase, of one or two ferrocene moieties into peptide nucleic acid (PNA) oligomers by click chemistry is presented.
متن کاملThermal melting studies of alkyne- and ferrocene-containing PNA bioconjugates.
The preparation of new metal-containing Peptide Nucleic Acids (PNAs) is currently a field of research intensively studied for various purposes, e.g. DNA biosensors. The role played by the metal centre, notably on the stability of the PNA.DNA hybrid, is obviously crucial, but has not yet been fully investigated. In this work, UV-Vis spectroscopic measurements of solutions of DNA.PNA hybrids, who...
متن کاملClickity-click: highly functionalized peptoid oligomers generated by sequential conjugation reactions on solid-phase support.
N-Substituted glycine peptoid oligomers were used as substrates for azide-alkyne [3 + 2] cycloaddition conjugation reactions and then elaborated through additional rounds of oligomerization and cycloaddition. This novel sequential conjugation technique allowed for the generation of complex peptidomimetic products in which multiple heterogeneous pendant groups were site-specifically positioned a...
متن کاملA Brief Review of Chelators for Radiolabeling Oligomers
The chemical modification of oligomers such as DNA, PNA, MORF, LNA to attach radionuclides for nuclear imaging and radiotherapy applications has become a field rich in innovation as older methods are improved and new methods are introduced. This review intends to provide a brief overview of several chelators currently in use for the labeling of oligomers with metallic radionuclides such as 99m ...
متن کاملControlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer.
The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks, forming dimers, trimers, and tetramers. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioconjugate chemistry
دوره 20 8 شماره
صفحات -
تاریخ انتشار 2009